

Il progetto di riqualificazione architettonica, ambientale ed energetica per l'attuazione del "Piano Casa"

Vincenzo La Manna L'IMPIEGO DI TECNICHE DI BIOEDILIZIA- Parte I

L'edilizia è divenuta negli ultimi 50 anni l'attività umana a più alto impatto ambientale

Incide fortemente su: salute degli esseri viventi consumo di territorio

ne di risorse all'ambiente naturale consumi energetici

produzione di emissioni nocive e climalteranti produzione di rifiuti

assorbe il 40 % dell'energia complessiva prodotta in Europa produce il 45% del'inquinamento atmosferico consuma il 50% delle risorse naturali produce fino al 70% dei rifiuti oltre il 90% dei materiali per l'edilizia derivano direttamente o sono composti con prodotti di origine petrolifera

L'impiego di tecniche di bioedilizia

IL RISPARMIO ENERGETICO E' UN RISCHIO

PP.C. DELLA
PROVINCIA DI CATANIA

Secondo alcuni la soluzione strategica per risparmiare energia (petrolio) è isolare gli edifici con gli espansi derivati dal petrolio.

A sostegno di questa teoria sta la considerazione che per ogni Kg di petrolio usato per produrre espansi se ne risparmierebbero molti di più a seguito del significativo risparmio energetico ottenuto nella climatizzazione dell'edificio.

Il petrolio, risorsa limitata ed in esaurimento, potrebbe essere usato per fini più nobili, potendo essere sostituito, negli usi più comuni, da altri materiali più disponibili.

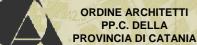
PIU' PETROLIO PER RISPARMIARE PETROLIO

L'energia si risparmia prima di costruire

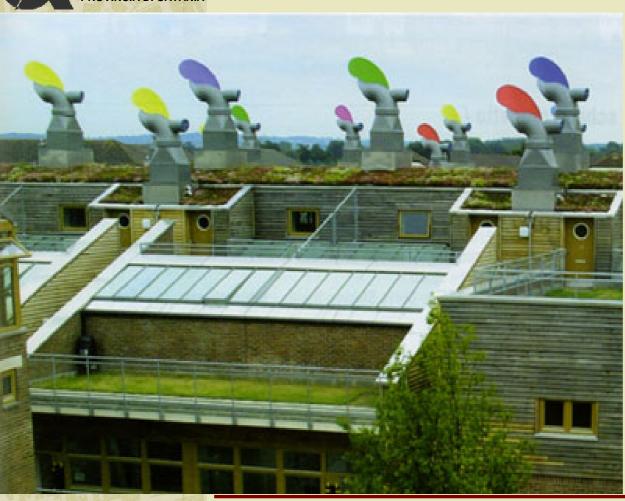
Energia necessaria per la produzione di materiali in edilizia

Legno	580KWh / ton
Terra cruda	x 2
Laterizio	x 4
Cemento	x 5
Plastica	x 6
Vetro	x 14
Acciaio	x 24
Alluminio	x 126

Produrre cemento richiede 1600°C Produrre mattoni e calce 900°C Produrre legno solo un po' di sole


ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

LA NATURA E' UNA FABBRICA DI MATERIALI

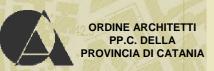


ARCHITETTURA NATURALE ARCHITETTURA BIOECOLOGICA BIOARCHITETTURA

Sono tutti termini attualmente utilizzati per caratterizzare un'architettura per la vita;

bio-compatibile perchè realizzata con materiali che provengono dal ciclo biologico e vi ritornano; eco-sostenibile perchè attenta a non consumare più risorse di quanto la natura può ri-produrne; rispettosa della tradizione e del regionalismo; pensata in rapporto al contesto ed al clima locale;

che garantisce la durata e l'efficienza degli edifici; che si occupa prioritariamente della salute dell'uomo.



BIOEDILIZIA

Tale termine viene utilizzato per indicare materiali, processi e metodi edilizi rispettosi della salute degli abitanti, possibilmente di origine naturale ed a basso impatto ambientale.

In bioedilizia particolare attenzione progettuale è rivolta alla condizioni di benessere fisico e psichico delle persone in rapporto alle abitazioni ed ai luoghi su cui esse insistono.

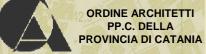
PROGETTARE
SECONDO GLI
ELEMENTI
Sole

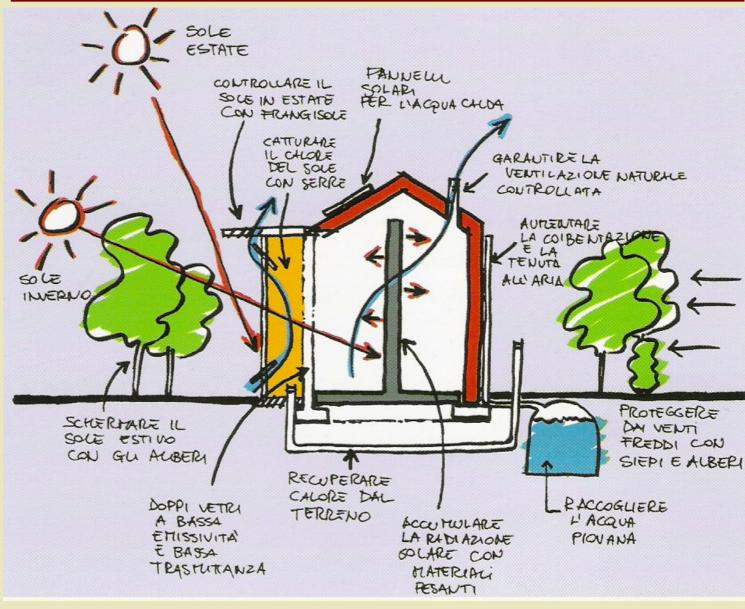
- -FAR PENETRARE I RAGGI SOLARI ALL'INTERNO DELL'EDIFICIO IN INVERNO, TENERLI FUORI IN
- -FAR PENETRARE LA LUCE ALL'INTERNO DELL'EDIFICIO IN INVERNO, BILANCIARE LA LUCE IN ESTATE
- -DISEGNARE L'INVOLUCRO DELL'EDIFICIO PER OTTENERE DURANTE L'INVERNO IL MASSIMO ISOLAMENTO ED UNA BUONA INERZIA TERMICA IN ESTATE

PROGETTARE
SECONDO GLI
ELEMENTI
Acqua

- RACCOGLIERE L'ACQUA PIOVANA PER MOLTEPLICI USI: L'ACQUA POTABILE E' UNA RISORSA MOLTO PREZIOSA
- NEBULIZZARE L'ACQUA PIOVANA PER RAFFRESCARE GLI SPAZI INTERNI, GLI SPAZI APERTI E I SISTEMI DI CONDIZIONAMENTO

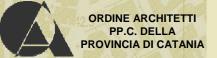
PROGETTARE
SECONDO GLI
ELEMENTI
Vento

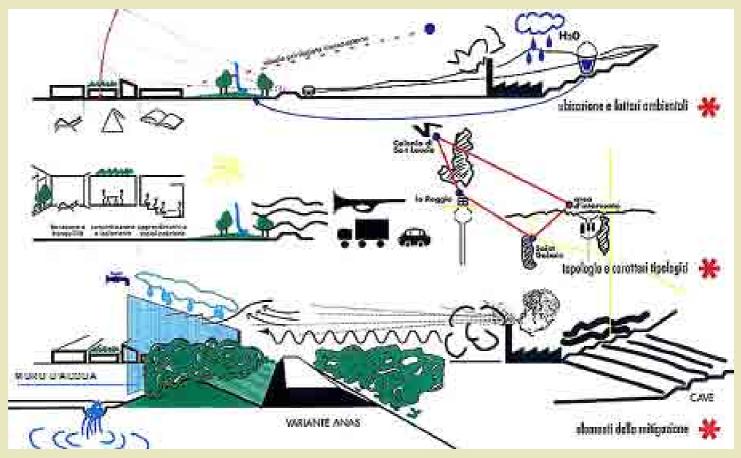

- RIPARARSI DAI VENTI FREDDI IN INVERNO
- FAR PENETRARE IL VENTO FRESCO E LE BREZZE IN ESTATE
- LASCIARE CHE IL FLUSSO DELLA VENTILAZIONE ATTRAVERSI L'EDIFICIO E GLI SPAZI APERTI
- DISEGNARE L'INVOLUCRO DELL'EDIFICIO PER OTTENERE UNA DOPPIA PELLE ED UN'INTERCAPEDINE VENTILATA


PROGETTARE
SECONDO GLI
ELEMENTI
Vegetazione

- PROTEGGERE L'EDIFICIO E GLI SPAZI APERTI CON PIANTE ED ALBERI
- COSTRUIRE BARRIERE VERDI PER PERMETTERE AL FLUSSO D'ARIA DI ATTRAVERSARE GLI SPAZI INTERNI ED APERTI
- UTILIZZARE LE PIANTE COME SCHERMATURE PER I RAGGI DEL SOLE

ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

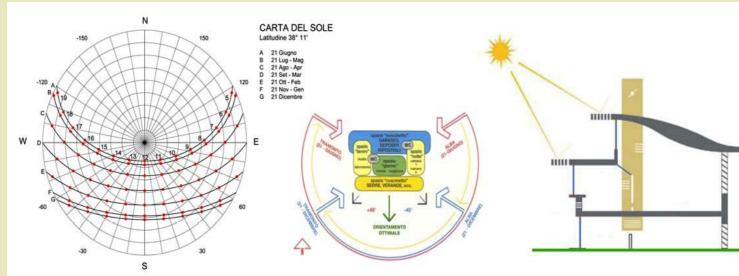

IL PROGETTO DELLA CITTÀ ESISTENTE

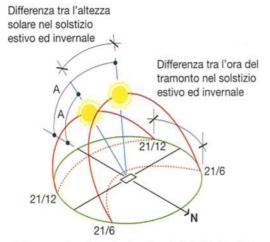


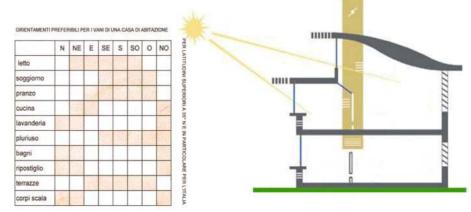
Innovazione o solo corretto modo di progettare?

L'impiego di tecniche di bioedilizia

Una progettazione in relazione al sito che tenga conto:

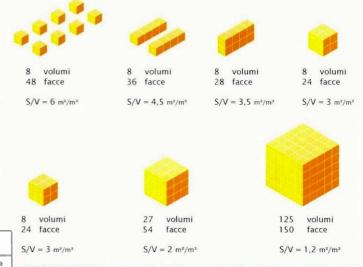

- dell'ombreggiamento per la presenza di ostruzioni e che sfrutti alcune condizioni al contorno (ad esempio la presenza di alberi per l'ombreggiamento estivo)
- delle caratteristiche dell'area (morfologia, presenza di elementi di inquinamento acustico o ambientale, presenza di corsi d'acqua, ecc.)


ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA


Una progettazione attenta al clima locale, che tenga conto delle diverse condizioni stagionali (temperatura, umidità relativa, ventosità, irraggiamento solare).

IL PROGETTO DELLA CITTÀ ESISTENTE

L'altezza solare (A) varia al variare della latitudine (L) solstizio invernale $A = 90^{\circ} - L - 23^{\circ} 27'$ solstizio estivo $A = 90^{\circ} - L + 23^{\circ} 27'$


PP.C. DELLA

PROVINCIA DI CATANIA

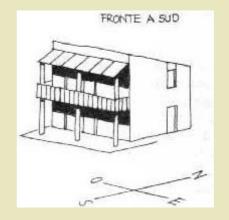
IL PROGETTO DELLA CITTÀ ESISTENTE

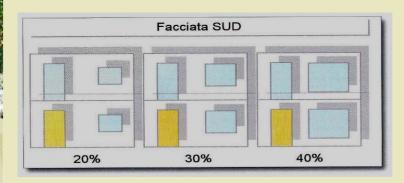
Forma compatta della costruzione: vantaggioso rapporto S/V tra superficie e volume.

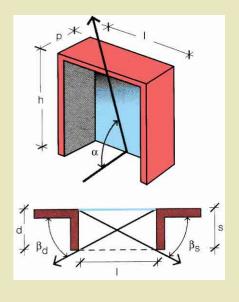
Orientamento della facciata	A		energia s assimo a	solare in s pporto	%	
Onentamento della lacciata	a	ь	С	d	Totale	_
N a b d B b d C b B C	3,67 2,61 5,23	15,82 22,49 11,25	50,78 36,14 72,27	15,82 22,49 11,25	86,10 83,74 100,00	
N d A b B b C b C	3,83 2,71 5,42	25,79 36,76 18,38	46,42 33,02 66,04	9,25 11,71 5,86	74,95 84,20 95,70	
N d A a d B d C A B C	3,96 2,80 5,60	36,57 52,02 26,00	36,57 26,00 52,02	3,96 5,60 2,80	81,06 86,45 86,45	
N C A A C C A B C C A B C C A B C C A B C C A C C A B C C A C C A C C C A C C C A C C C C	8,25 5,85 11,71	46,42 66,04 33,02	25,79 18,38 36,76	3,83 5,42 2,71	74,95 95,70 84,20	

Orientamento
dell'edificio per il
massimo
sfruttamento
degli apporti
solari

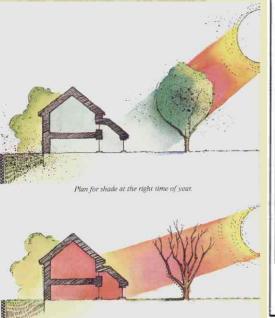
Variazione del rapporto S/V. I cubi, variamente aggregati, hanno lato di 1 m.

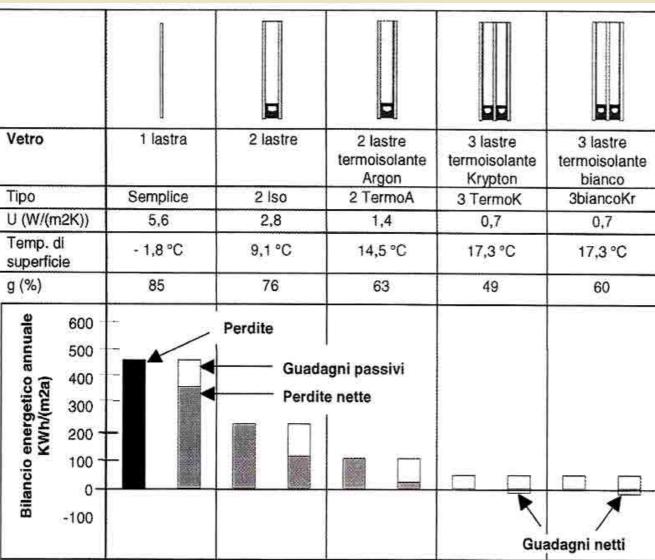



PROVINCIA DI CATANIA

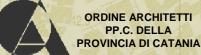

IL PROGETTO DELLA CITTÀ ESISTENTE

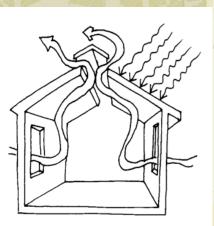
Distribuzione, orientamento e sistemi di protezione delle superfici trasparenti, il loro rapporto con la superficie opaca, in relazione allo sfruttamento degli apporti solari diretti nel periodo invernale e al controllo dell'irraggiamento nel periodo estivo e all'ottenimento di un adeguato livello di illuminazione naturale

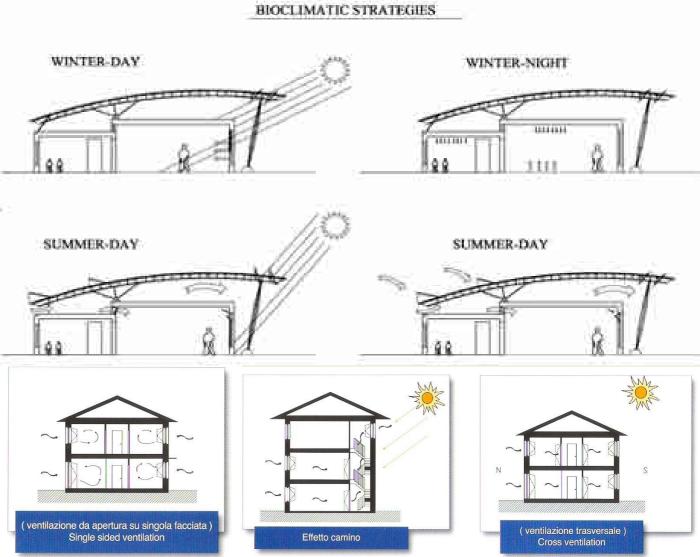




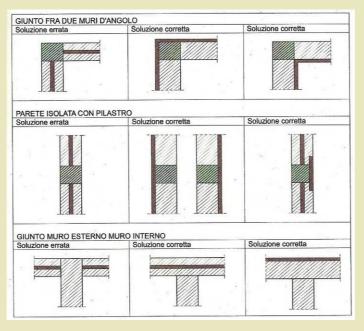
ORDINE ARCHITETTI PP.C. DELLA PROVINCIA DI CATANIA


Tipo di materiale dei telalo		Valore Uf del telalo
	spessore mm. 50	2,4
Legno duro (rovere, mogano, iroko)	spessore mm. 60	2,2
	spessore mm. 70	2,1
	spessore mm. 50	2,0
Legno tenero (pino,abete, larice, douglas, hemiock)	spessore mm. 60	1,9
	spessore mm. 70	1,8
Pvc a due camere		2,2
Pvc a tre camere		2,0
Pvc (telal da 58-80 mm)		compreso tra 1,7 e 1,2
Alluminio senza taglio termico		7,0
Alluminio a taglio termico		compreso tra 2,2 e 3,8

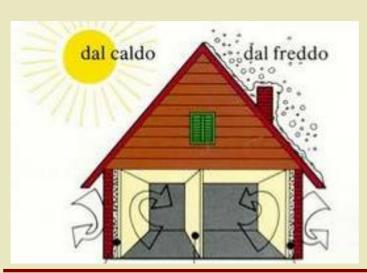


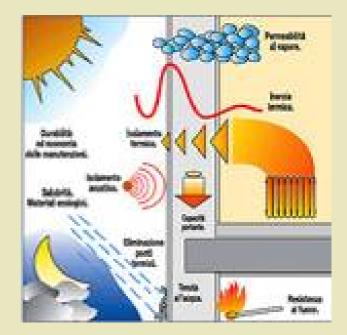

Le temperature di superficie indicate si riferiscono ad una temperatura esterna di -10 °C e a una temperatura interna di +20 °C

Distribuzione, orientamento e funzionamento dei sistemi di ventilazione naturale

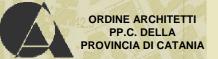


ORDINE ARCHITETTI

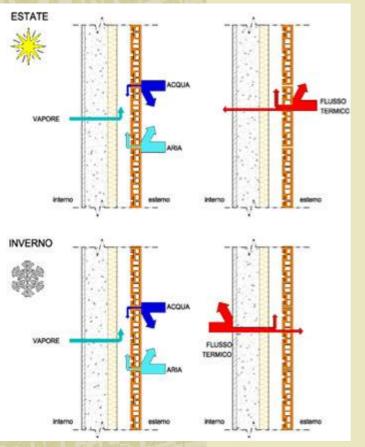

PP.C. DELLA

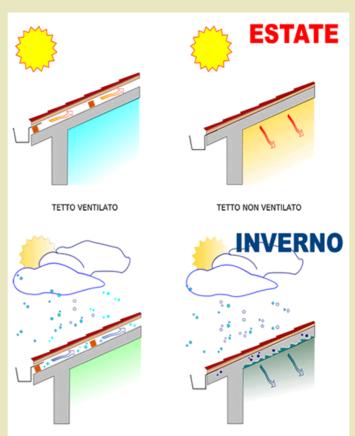

PROVINCIA DI CATANIA

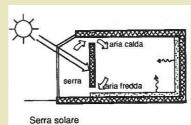
IL PROGETTO DELLA CITTÀ ESISTENTE

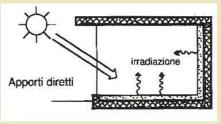


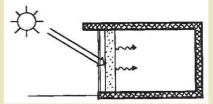
Presenza di un efficace isolamento termico ed assenza di ponti termici




ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA




Uso passivo dell'energia solare per lo sfruttamento degli apporti solari in maniera diretta o indiretta (finestre, accumulatori di calore)


Uso di semplici tecnologie costruttive ottimizzano gli scambi di calore dell'involucro con l'esterno



Integrazione di tecnologie solari attive (collettori solari, pannelli fotovoltaici) ed uso di tecnologie ad alto rendimento (pompe di calore, sonde geotermiche, ecc.)

SALUBRITA' DEGLI AMBIENTI

La qualità degli ambienti interni è di estrema importanza in quanto determina effetti sulla salute e sul comfort degli occupanti.

Nei paesi industrializzati le persone trascorrono otre l'85% del loro tempo in spazi chiusi e artificialmente climatizzati (casa, ufficio, ristoranti, cinema, centri commerciali, ecc.).

Il comfort abitativo principalmente dipende dai seguenti fattori:

Qualità dell'aria: purezza (assenza inquinanti)
Benessere termoigrometrico
Confort visivo
Confort acustico

Inquinamento elettromagnetico Inquinamento da Radon

Psicologia dell'abitare Fisiologia dell'abitare

ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

PROVINCIA DI CATANIA

- 1 Libri
- 2 Mobili in compensato (esalazione di colle e vernici)
- 3 Giocattoli di pezza, peluches
- 4 Deodoranti ambientali
- 5 Profumi e cosmetici
- 6 Prodotti per l'igiene personale
- 7 Umidificatore
- 8 Antitarme (natfalina, ...)
- 9 Materasso e biancheria da letto (acari)
- 10 Moquettes e tendaggi (acari)
- 11 Camino (gas di combustione)
- 12 Imbottiture e tappezzerie
- 12 Fumo di sigaretta
- 14 Parquet e mobili di compensato
- 15 Detergenti chimici per la pulizia
- 16 Cucina a gas
- 17 alimenti (cucinati o in dispensa)
- 18 Libri, documenti cartacei
- 19 Stampante e computer
- 20 Stufa a legna o carbone
- 21 Umidità, muffe
- 22 Prodotti di manutenzione (acidi, pesticidi, ...)
- 23 Lavatrice e asciugatrice senza sfiato
- 24 Detersivi e smacchiatori chimici
- 25 Isolanti delle tubature in amianto
- 26 Radon
- 27 Vernici, solventi, sostanze chimiche diverse
- 28 Benzina
- 29 Gas di scarico dell'automobile

inquinante	descrizione	sorgente domestica	effetti sulla salute
Diossido di azoto	Gas incolore e insapore che si forma durante la combustione a temperatura elevata	Stufe a cherosene e apparecchi a gas non ventilati	Irritazione delle vie respiratorie, danni ai polmoni dopo lunga esposizione
Ossido di carbonio	Gas incolore e insapore che si forma per incompleta combustione	Scarichi di automobile (garage unito all'abitazione), fumatori, stufe non ventilate	Riduzione della capacità di ossigenazione del sangue, indebolimento della vista, nausea, debolezza, confusione mentale, morte per alte concentrazioni
Particelle di fumo	Complessa mistura di particelle formantesi per incompleta combustione	Fumo di tabacco, stufe a legna, caminetti, stufe a cherosene non ventilate	Irritazione delle vie respiratorie, enfisema, disturbi cardiaci, cancro
Formaldeide	Gas pungente, incolore, emesso da adesivi e prodotti a base di urea-formaldeide	Compensati, paniforti, truciolati, isolamenti realizzati con schiume a base di urea-formaldeide	Irritazione agli occhi, naso, gola; esantemi e reazioni allergiche
Radon	Gas incolore e inodore, radioattivo, emanato da materiali della crosta terrestre	Terre e rocce utilizzati come materiali costruttivi (cementi, graniti, tufi, laterizi, pozzolane)	Si stima che possa essere responsabile di una percentuale variabile tra il 5 e il 20% dei casi di cancro
Composti organici volatili (VOC)	Vasto gruppo di molecole contenenti carbonio e idrogeno. Da prodotti sintetici e combustione incompleta	Solventi negli adesivi, nei detergenti, nelle vernici, pavimenti e rivestimenti sintetici, imbottiture, isolanti, fumo, cottura	Vasta gamma di conseguenze, dall'irritazione al cancro
Microorganismi	Batteri, funghi, virus, pollini, muffe e altri	Umidità nei muri, emanazioni umane, mobili, tappeti, animali	Malattie respiratorie, allergie, raffreddori, influenze, polmoniti

SINDROME DELL'EDIFICIO MALATO Sick Building Syndrome S.B.S.

SINDROME DA SENSIBILITA' CHIMICA MULTIPLA Multiple Chemical Sensitivity Syndrome - M.C.S.

Disturbi oculari (senso di secchezza o di corpo estraneo, bruciore, prurito, iperemia congiuntivale)

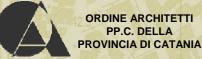
Disturbi nasali e faringei (rinorrea, occlusione nasale, prurito nasale, senso di irritazione e di "gola secca")

Disturbi respiratori (costrizione toracica, dispnea)

Disturbi cutanei (eritema, secchezza, prurito)

Disturbi generali (cefalea, difficoltà di oncentrazione, sonnolenza, vertigini, nausea)

Senso di stanchezza


Turbe neurovegetative (nausea, tachicardia)

Turbe neurologiche (mal di testa, vertigine, perdita di memoria)

Turbe dell'umore (ansia, depressione, disturbi psichici vari)

Dolori muscoloscheletrici, disturbi gastrointestinali e delle vie respiratorie.

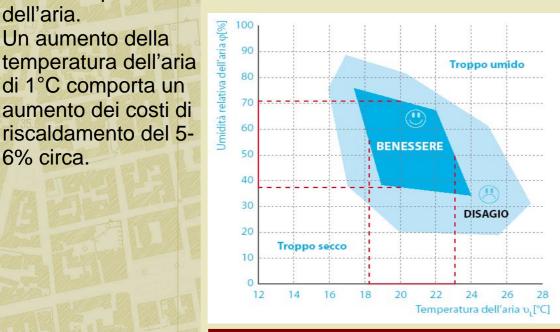
Per mantenersi nella zona di comfort, ad alte temperature superficiali corrispondono basse temperature dell'aria. Un aumento della temperatura dell'aria di 1°C comporta un

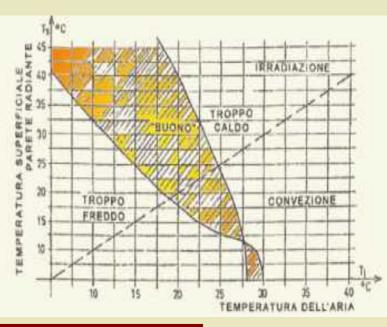
aumento dei costi di

6% circa.

IL PROGETTO DELLA CITTÀ ESISTENTE

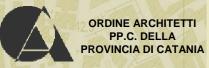
BENESSERE TERMOIGROMETRICO


Il riscaldamento radiante è quello ottimale, sia dal punto di vista economico che da quello del benessere, poiché esso è simile all'effetto del sole sulla terra.


Il calore radiante penetra in maniera più profonda ed efficace dell'aria calda nella pelle.

Il calore radiante non provoca circolazione d'aria e di polveri.

Alte temperature superficiali prevengono la formazione di muffe e condense.

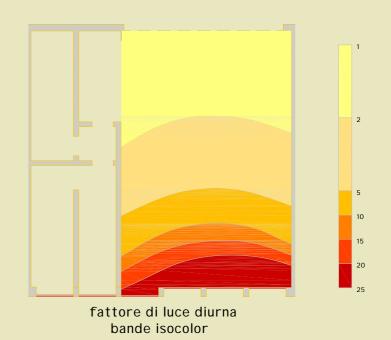

Nei sistemi di riscaldamento radiante (a parete, a pavimento, a sofitto) la temperatura del fluido vettore è bassa e quindi i consumi sono ridotti.

L'impiego di tecniche di bioedilizia

E' il rapporto tra l'illuminamento medio dell'ambiente chiuso (Em) e l'illuminamento (E0m) che si avrebbe, nelle identiche condizioni di tempo e di luogo, su una superficie orizzontale esposta all'aperto in modo da ricevere luce dall'intera volta celeste senza irraggiamento diretto del sole.

IL PROGETTO DELLA CITTÀ ESISTENTE

COMFORT VISIVO


Una buona illuminazione degli ambienti interni, non solo in termini di quantità, ma anche di qualità, influisce sul benessere delle persone intervenendo non solo sull'aspetto fisico, ma anche sull'aspetto psicologico del comfort.

Un'abitazione dovrà fondamentalmente basare la propria illuminazione sulla luce naturale del giorno; la luce artificiale servirà solo ad integrare la luce naturale.

Per ottenere un buon livello di illuminazione naturale si fa riferimento al **FMLD** *fattore medio di luce diurna* (UNI 10840/2007). Serve per valutare l'illuminazione naturale all'interno di un ambiente confinato, in assenza di radiazione solare diretta.

infisso ligneo

L'impiego di tecniche di bioedilizia

COMFORT ACUSTICO

Del rumore si possono dare definizioni diverse ma efficace ci sembra quella che individua il rumore come suono indesiderato capace di provocare disturbo alla quiete, all'intelligibilità del parlato e più in generale all'espletamento d'attività domestiche o lavorative che richiedono la concentrazione.

L'aumento delle fonti e dei livelli dei rumori ai quali siamo continuamente esposti, rende effettivamente molto importanti tutte le misure applicabili contro l'inquinamento acustico.

Il D.P.C.M.5/12/1997 definisce i requisiti acustici passivi degli edifici in base ad una classificazione per categorie di utenze.

Cat.	Destinazione	R'w	D _{2m,n,T,w}	L'nw
Α	Edifici adibiti a residenza e assimilabili	≥ 50	≥ 40	≤ 63
В	Edifici adibiti ad uffici e assimilabili	≥ 50	≥ 42	≤ 55
С	Edifici adibiti ad alberghi, pensioni ed attività assimilabili	≥ 50	≥ 40	≤ 63
D	Edifici adibiti ad ospedali, cliniche, case di cura e assimilabili	≥ 55	≥ 45	≤ 58
Е	Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili	≥ 50	≥ 48	≤ 58
F	Edifici adibiti ad attività ricreative o di culto e assimilabili	≥ 50	≥ 42	≤ 55
G	Edifici adibiti ad attività commerciali e assimilabili	≥ 50	≥ 42	≤ 55

L'impiego di tecniche di bioedilizia

ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

ORDINE ARCHITETTI PP.C. DELLA PROVINCIA DI CATANIA

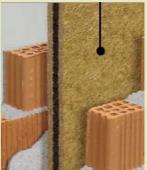
IL PROGETTO DELLA CITTÀ ESISTENTE

Feltro di lino

Feltro di kenaf

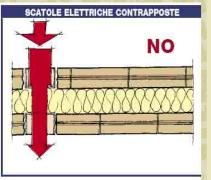
Fibra di lino

Lana di legno mineralizzata


Juta

Feltro di sughero

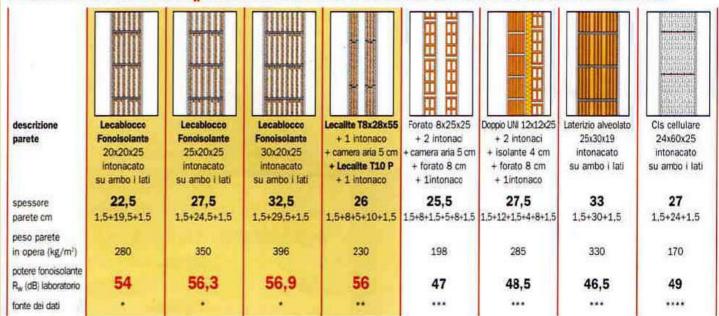
Sughero

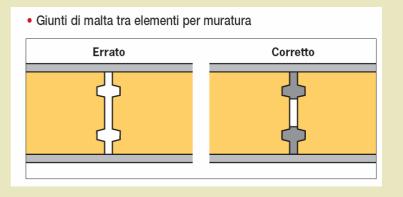


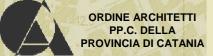
Fibra di cocco e pannello di sughero

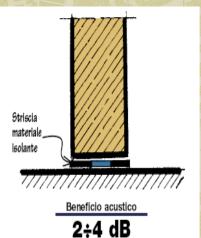
L'impiego di tecniche di bioedilizia

ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

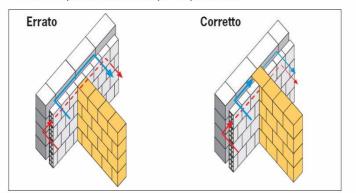


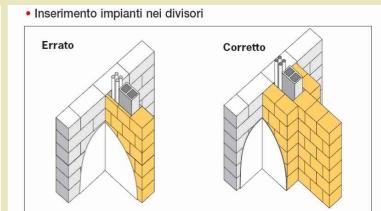



POTERE FONOISOLANTE Rw: CONFRONTO TRA ALCUNE PARETI CERTIFICATE IN LABORATORIO



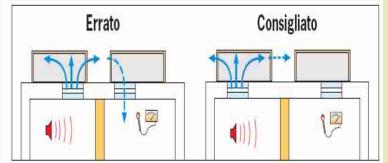
250 HZ	500 HZ	1.000 HZ
Peso parete 50 Potere isolante 32 dB	Peso kg/ Potere isolante 36 dB	Peso parete 50 Potere isolante 40 dB
Peso 100 Potere Isolante 36 dB	Peso 100 Potere Isolante kg/m² 40 dB	Peso 100 kg/m² Potere Isolant
Peso 200 Potere isolante kg/m² 40 dB	Peso parete 200 kg/m² Potere isolante 44 dB	Peso parete 200 kg/m² Potere isolant 48 dB


ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA



IL PROGETTO DELLA CITTÀ ESISTENTE

• Nodo tra parete divisoria e pareti perimetrali



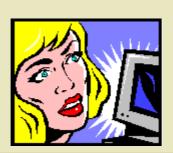
Nodo tra parete divisoria e solaio superiore

Posizionamento di finestre (o porte)

INQUINAMENTO ELETTROMAGNETICO

Il campo magnetico terrestre regola <u>naturalmente</u> i ritmi vitali delle specie al suo interno.

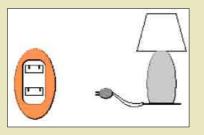
I campi elettromagnetici artificiali spezzano gli equilibri disturbando i processi biologici.

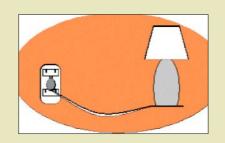

D.P.C.M. 23 APRILE 1992:

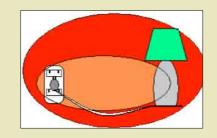
Campo d'esposizione	Campo elettrico kV/m	Campo magnetico mT
Esposizione prolungata	5	0,1 (*)
Esposizione limitata	10	1(*)

LIMITI NORMATIVI ELEVATI!!!

Lo stesso problema si riscontra nel rispetto delle distanze dalle linee aeree esterne. LIMITI INSUFFICIENTI!!!




Il pericolo da elettrosmog è presente in qualsiasi locale pubblico, posto di lavoro, casa propria. Infatti, ogni apparecchio elettrico, anche spento, genera un campo potenzialmente pericoloso.



Dal punto di vista bio-edile, valutiamo le anomalie al campo elettrico e magnetico:

- molto debole: livello naturale
- debole: livello poco rischioso

Campo elettrico

Campo magnetico

IMPIANTO ELETTRICO IN BIOEDILIZIA

è un impianto a "basso inquinamento". Soluzioni possibili:


- evitare impianti o apparecchi non necessariamente necessari;
- staccare la corrente, soprattutto nelle zone notte;
- mantenersi a distanza da apparecchi e linee elettriche;
- schermare impianti ed apparecchiature.

ORDINE INGEGNERI DELLA PROVINCIA DI CATANIA

ORDINE ARCHITETTI

PP.C. DELLA

PROVINCIA DI CATANIA

Dispositivo elettrico che disinserisce la tensione di erogazione nel momento in cui tutte le utenze risultano spente.

Controlla la zona notte o le camere singolarmente se è presente un apparecchio per locale.

- contatore all'esterno dell'abitazione
- distribuzione a "stella" o a "lisca di pesce"
- dorsali nei corridoi o in locali di solo transito;
- un tubo per ogni presa o punto di comando presenti in un locale
- dimensionare gli impianti in base a reali necessità
- percorsi delle tubazioni lontani da zone di riposo
- no prese triple o multiple;
- no termostati e elettrovalvole in tensione nella zona notte
- locali tecnici distanti da zone di sosta prolungata
- · assenza di masse metalliche nelle camere da letto
- corpi illuminanti a ridotto effetto dei campi elettromagnetici
- assenza di sistemi di allarme a microonde nelle zone di sosta

IL PROGETTO DELLA CITTÀ ESISTENTE

SCHERMAGGIO

All'interno dei cavi schermati il conduttore di terra e quello di schermo sono affiancati e non arrotolati. Le guaine non contengono PVC. Esistono anche vernici ed intonaci schermanti.

Si usano per utenze ad alimentazione continua (frigo, ecc.)

IMPIANTO DI TERRA

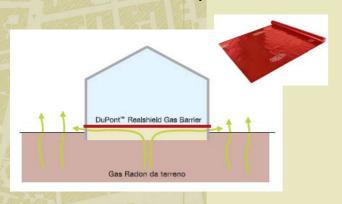
- schermi non collegati al conduttore di protezione dell'impianto
- linea di schermo all'esterno su un proprio dispersore;
- all'esterno, dispersore di terra collegato al dispersore di schermo
- tutte le masse metalliche presenti collegate a terra
- l'impianto di terra collegato alle gabbie di ferro delle fondazioni
- valori di resistenza dell'impianto di terra molto bassi, $< 10 \Omega$

PP.C. DELLA
PROVINCIA DI CATANIA

IL PROGETTO DELLA CITTÀ ESISTENTE

INQUINAMENTO DA RADON

Il radon è una gas radioattivo inodore ed incolore proveniente dal decadimento dell'uranio, presente nel terreno

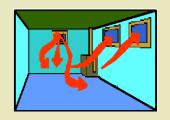


Attraverso l'aria si fissa nei polmoni.

Sul territorio nazionale, il radon è così ripartito:

LIGURIA, MARCHE, BASILICATA	20-40 Bg/mc
VAL D'AOSTA, TRENTINO, VENETO, EMILIA ROMAGNA	40-60 <u>Bq</u> /mc
TOSCANA, UMBRIA, MOLISE, PUGLIA	40-60 <u>Bq</u> /mc
PIEMONTE, ALTO ADIGE, SARDEGNA, ABRUZZO	60-80 <u>Bg</u> /mc
CAMPANIA, FRIULI VENEZIA GIULIA	80-100 <u>Bq</u> /mc
LOMBARDIA, LAZIO	100-120 Bq/mc

Nelle nuove costruzioni è opportuno usare membrane impermeabili.


Nelle caso di edifici esistenti si procede mediante: -depressurizzazione del vespaio;

- suzione del sottosuolo;

- ventilazione naturale.

PP.C. DELLA

PROVINCIA DI CATANIA

IL PROGETTO DELLA CITTÀ ESISTENTE

Principi guida per la selezione dei materiali secondo i principi della sostenibilità

MANTENERE CICLI CHIUSI

Valutare l'ecobilancio del materiale

USARE MATERIE PRIME RINNOVABILI Garantire la continuità dello sviluppo

RISPARMIARE ENERGIA Considerare i consumi per estrazione, produzione, distribuzione

RISPARMIARE RISORSE Valutare le materie prime

PREFERIRE LA MOLTEPLICITA' ALL'UNICITA' Scegliere materiali diversi per funzioni diverse

FAVORIRE IL REGIONALISMO Usare materiali locali geograficamente e culturalmente

INFLUENZA DEI MATERIALI DA COSTRUZIONE SULLA QUALITA' DELL'ABITARE

- 1. Microclima: umidità relativa / temperatura / movimenti dell'aria
- 2. Clima elettrico: elettromagnetismo /ionizzazione / elettrostaticità
- 3. Clima energetico: onde terrestri / onde cosmiche
- 4. Qualità dell'aria: tossicità / odori / radioattività / cariche batteriche
- 5. Clima profisico: luce / colore / acustica

IL PROGETTO DELLA CITTÀ ESISTENTE

Elementi di valutazione della qualità dei materiali bioecologici

COIBENZA

Capacità di non disperdere il calore accumulato

ACCUMULAZIONE

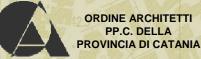
Capacità di mantenere il calore prodotto

TEMPERATURA SUPERFICIALE

Temperatura misurabile sulla superficie dei materiali

IGROSCOPICITA'

Capacità di assorbire vapore acque dall'aria e di ricederlo


DIFFUSIONE

Passaggio non convettivo di gas e fluidi

ASSORBIMENTO

Capacità di filtrazione, accumulazione e rigenerazione delle sostanze volatili

COME RICONOSCERE I **MATERIALI PER** LA BIOEDILIZIA

IL PROGETTO DELLA CITTÀ ESISTENTE

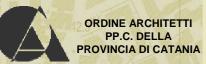
L'Organizzazione mondiale per la standardizzazione (ISO) ha sviluppato norme per tre tipi di asserzioni ambientali in materia di beni e servizi:

Etichette e dichiarazioni ambientali di Tipo I, basati sulla certificazione di terzi per beni e servizi specifici;

Etichette e dichiarazioni ambientali di Tipo II, che sono asserzioni ambientali effettuate senza la certificazione di terzi indipendenti, da produttori, importatori distributori, ecc.

Etichette e dichiarazioni ambientali di Tipo III, che corrispondono a dichiarazioni ambientali che quantificano gli effetti ambientali dei prodotti senza che vengano posti limiti da rispettare o valori di riscontro. In questo si parla di "Dichiarazione ambientale di prodotto" DAP ("Environmental Product Declaration" - EPD). La DAP è basata sulla valutazione del Ciclo di Vita del Prodotto (LCA)

La certificazione ANAB – ICEA è di tipo I



Certificato n. EDIL 2009 04

Coefficiente di penetrazione termica b

(kJ/m²°Ch^{0,5}) E' un indice della sensazione che fa sembrare al tatto di differente temperatura materiali che in realtà hanno la stessa temperatura. Il materiale è percepito come "piacevole (più caldo in superficie), se il coefficiente b è basso.

IL PROGETTO DELLA CITTÀ ESISTENTE

Conducibilità termica λ (W/ m·°C)

Indica la quantità di calore che attraversa 1 m^2 di materiale di 1 m di spessore, quando la differenza di temperatura tra le due facce del materiale è di 1 $^{\circ}$ C . Minore è tale coefficiente, maggiore sarà la capacità isolante. Vengono considerati isolanti, i materiali aventi $\lambda < 0,1$ (W/m $^{\circ}$ C)

Calore specifico Cp (kJ/kg.°C)

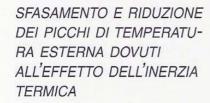
Indica quanto calore viene assorbito per ogni Kg di materiale per aumentare la temperatura dello stesso di 1 °C

Capacità di accumulo termico $S = \rho \cdot Cp$ (kJ/m³.°C)

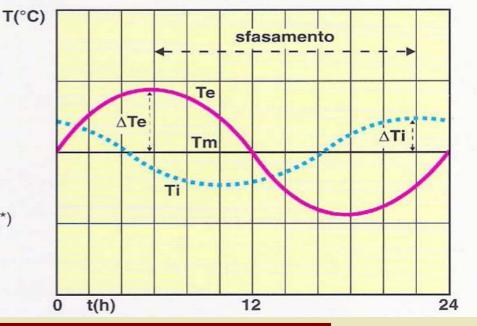
Indica quanto calore è necessario per riscaldare 1 m³ di materiale di 1°C. E' direttamente proporzionale al peso specifico (Costituiscono eccezione i materiali edili di naura organica: legno e sui derivati, sughero).

Diffusività termica a' = $\lambda S = \lambda (C \cdot \rho)$ (m²/sec)

Indica la velocità di assorbimento del calore e la sua distribuzione nei processi di accumulo. E' un indice della velocità con cui la temperatura attraversa e si distribuisce in un materiale. Un materiale edile per gli involucri (pareti esterne, tetto) è indicato per la protezione estiva dal calore, se ha bassi valori di a', quindi se combina bassi valori di λ ed alti valori di S. IL LEGNO ED I SUOI DERIVATI POSSEGGONO TALE QUALITA'


Materiale	Peso specifico ρ(kg/m³)	Capacità di conduzione termica λ (W/mK)	Capacità termica specifica c (kJ/kgK)	Coefficiente di accumulo termico S (kJ/m³K	Coefficiente di penetrazione termica b(kJm ² Kh ^{0,5})	Capacità di conduzione della temperatura à x 1000 (m²/s)
Polistirolo	15	0,035	1,50	22,5	1,68	1,56
Lana minerale e di vetro	30	0,040	0,80	24	1,86	1,67
Fibra di lino	30	0,040	1,30	39	2,37	1,03
Fibra di cellulosa	50	0,045	1,90	95	3,92	0,47
Pannelli di sughero	100	0,045	1,60	160	5,08	0,28
Pannelli di fibra di legno	190	0,045	2,20	418	8,22	0,11
Pannelli in lana di vetro	400	0,075	1,90	760	14,30	0,10
Calcestruzzo porizzato	400	0,12	1,05	420	13,45	0,29
Legno massello (morbido)	600	0,13	2,10	1260	24,25	0,10
Pannello di terra cruda	500	0,14	1,14	570	16,92	0,25
Laterizio porizzato	700	0,16	0,92	644	19,23	0,25
Terra alleggerita	800	0,25	1,10	880	28,09	0,28
Pannello di cartongesso	1.000	0,27	0,84	840	28,54	0,32
Pietra arenaria 1,0	1.000	0,50	0,88	880	39,75	0,57
Laterizio HLZ 1,2	1.200	0,50	0,92	1104	44,50	0,45
Terra e paglia	1.200	0,55	1,00	1200	48,67	0,46
Intonaco di terra cruda	1.700	0,80	1,00	1700	69,87	0,47
Intonaco di calce	1.800	0,87	0,96	1728	73,45	0,50
Terra cruda piena	1.800	0,91	1,00	1800	76,67	0,51
Arenaria	2.400	2,10	0,93	2232	129,70	0,94
Cemento armato	2.500	2,10	0,96	2400	134,49	0,88
Acciaio	7.800	60,00	0,40	3120	819,69	19,23
Alluminio	2.700	203,00	0,90	2430	1.332,61	83,54

L'impiego di tecniche di bioedilizia


SFASAMENTO φ (ore)

Si intende l'intervallo di tempo (in ore) con cui la sollecitazione termica giunta a contatto con un elemento passa dall'estradosso all'intradosso dell'elemento stesso. Tanto maggiore è il valore di φ tanto maggiore sarà il tempo necessario al flusso di calore per giungere dall'interno all'esterno del fabbricato, per cui tanto maggiore sarà la protezione dal caldo estivo. Per le zone ad elevato irraggiamento come la Sicilia è consigliabile uno sfasamento minimo di 10-12 ore.

Tm = temperatura media (*)Te = temperatura esterna

Ti = temperatura interna Smorzamento $\Delta Te / \Delta Ti$

L'impiego di tecniche di bioedilizia

IGROSCOPICITA'

Si intende la capacità di un materiale di assorbire, trasmettere ed emettere, anche in forma liquida, l'umidità atmosferica dell'aria agendo così in maniera equilibratrice sull'umidità atmosferica.

Una buona igroscopicità consente anche ad evitare acqua di condensa e di conseguenza formazione di muffa e danni alla costruzione, nonché permanente deposito di umido nei materiali da costruzione e quindi un isolamento termico più scadente e temperature di superficie più basse.

Soprattutto i primi 2 cm di un materiale da costruzione sono rilevanti per l'equilibrio igrometrico dell'ambiente.

Intonaco di terra cruda spesso 20 mm	60 gr/mq
Intonaco a calce	33 gr/mq
Intonaco a calce con tinta a calce	15 gr/mq
Tappeto in fibra sintetica	26 gr/mq
Tappeto in lana	52 gr/mq
Pavimento in PVC e poliestere	0-2 gr/mq
Pavimento con assi di abete rosso	33 gr/mq

ORDINE ARCHITETTI PP.C. DELLA PROVINCIA DI CATANIA

IL PROGETTO DELLA CITTÀ ESISTENTE

DIFFUSIVITA' DEL VAPOR ACQUEO O PERMEABILITA'

E' il fenomeno della migrazione del vapor acqueo attraverso materiali da costruzione provocata dalla caduta di pressione dello stesso (ad es. tra l'interno e l'esterno) in particolari condizioni di pressione e temperatura.

FATTORE DI RESISTENZA AL VAPORE μ (adim.): dipende solo dalla natura del materiale e non dagli spessori. Indica quante volte un materiale edile è più isolante al vapore rispetto ad un strato di aria ferma (μ =1) dello stesso spessore. Tanto più alto è μ tanto maggiore sarà l'impermeabilità al vapor acqueo del materiale.

Sd (m) = μ x s dove s è lo spessore di un determinato strato di materiale

	μ	capacita di diffusione	Sd (m)	capacita di diffusione
	< 10	ottimale	< 4	ottimale
	10_50	sufficiente	4 -7	sufficiente
	50- 500	cattiva	7 - 15	cattiva
	500 - 15000	pessima	15 – 25	pessima
	>15000	praticamente nulla	>25	barriera al vapore
	>100000	barriera al vapore		·
4				

MATERIALI DA COSTRUZIONE	Densità (Kg/mc)	μ
Polistirolo	15	20-50
Lana minerale e di vetro	30	1
Riempimento di cellulosa	50	2
Pannello di sughero	100	5-10
Pannello di fibra di legno	170	5
Legname (legno tenero)	600	20-40
Laterizio poroso	700	5-10
Pannello di carton geso	1000	11
Blocco di calcestruzzo	1000	5-10
Intonaco di calce	1800	8
Pietra arenaria	2400	50-100
Cemento armato	2500	70-150
Massetto di asfalto	2300	œ
COLORI		
Tinta di calce		180
Tinta al silicato		200
Velatura con olio e resina naturale		200
Dispersione a resina naturale		220
Dispersione a resina artificiale		1800
Vernice a resina naturale		6000

Vernice a resina artificiale

10000

ORDINE ARCHITETTI

PROVINCIA DI CATANIA

ASSORBIMENTO

I materiali da costruzione naturali igroscopici e capaci di diffusione sono al tempo stesso più o meno capaci di assorbimento e di rigenerazione. Grazie al loro sistema capillare assorbono gas, vapori liquidi e, quindi, odori forti, sostanze nocive, umidità, ecc.

IL PROGETTO DELLA CITTÀ ESISTENTE

UMIDITA' DEL MATERIALE E TEMPI DI ASGIUGAMENTO

In una casa unifamiliare a costruzione massiccia vengono "incorporati" circa 40000 litri d'acqua.

La durata di essiccamento può essere calcolata in giorni: **t = s x d**² dove t è il tempo di asciugatura in giorni S è un parametro proprio del materiale da costruzione D è lo spessore dell elemento in cm

Materiale	S	durata di essiccamento in giorni	
		d=30 cm	d=2cm
Malta di calce	0,25	225	1
Mattone poroso	0,28	252	
Legno abete rosso	0,9	810 (2,2 anni)	3,6
Calcestruzzo	1,60	1440 (4,0 anni)	
Malta di cemento	2,50	2250	10

A causa dell'umidità dei muri diminuisce la conducibilità e la diffusivita; il 2% in più di umidità sulle pareti di calcestruzzo provoca già un isolamento termico più basso del 25%.